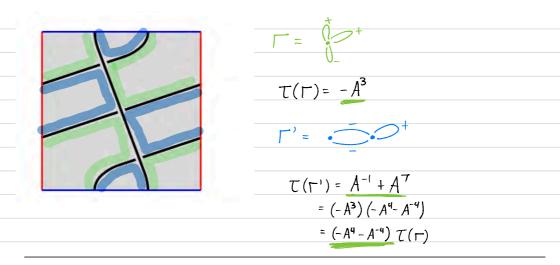
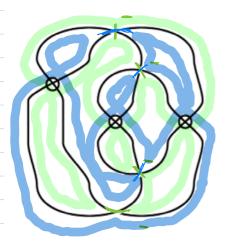
David Kruzel

12 July 2024

Bornager's
$$\nu$$
 polynomials
When Boninger introduced his polynomials he did not have
Virtual knots in mind. For the Sake of today's discussion, we
will be focusing on Virtual knots.
Given a checkerboard-colorable virtual knot K, We can take T of
the Tait graphs of K. For a Tait graph T of K, we define
 $\nu_{k,r}(t) = [(-A)^{-3w(k)}T(T)]$
where $w(k) = writhe of K$.
Some Examples
For any classical knot K with Tait graphs Γ, Γ' , we
have $\nu_{k,r}(t) = \nu_{k,r}(t) = J_k(t) = Jones polynomial of K.$
 4.99
 $\Gamma = \frac{1}{t+2}$
 $T(\Gamma) = A^8 + 2 + A^{-8} = (-A^4 - A^{-4})^2$
 $\Gamma' = \sqrt{T(\Gamma')} = 1$



Virtual Knot 4.107



Γ= $\tau(\Gamma) = A^{-12}$ $\mathcal{T}(\Gamma') = A^{12}$

Gauss Codes A Gauss Code is a way of representing Knot diagrams. For us, a Gauss Code with n classical crossings is Some ordering of the Set {1,-1, 2,-2,..., n,-n} along With some length n sequence of t's and -'s. For example: (-1, 2, 2,3),(-,-,-) a +/- in the Kth position indicates that the Kth indicate the order of the Crossings as we move around the Knot crossing looks like +/- indicate over/under ٢a 2

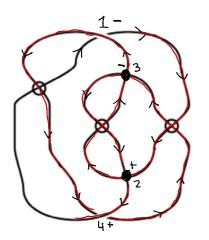
Not all Gauss Codes correspond to planar graphs. <u>Eg. (1,-2,3,-1,2,-3), (+,+,-)</u>

with virtual crossings without allowing virtual crossings 3

A virtual knot is an equivalence class of Gauss codes under Virtual Reidemeister moves. Each possible Gauss code corresponds to a unique Virtual Knot, So when using a computer a computer to Compute things we may plug in our Gauss-codes worry free.

Eg.

Virtual Knot 4.107



 $(-1, 2, -3, 1, -4, 3, -2, \mathbf{4})$

(-,+,-,+)

Calculating 2 There are a few steps: Determine whether or not a given Gauss code corresponds to a connected, checkerboard colorable diagram • From the Gauss code, obtain the Tait graphs → · From the Tait graphs, calculate T Eg. Calculate VK, F, VK, F, For 4.107